If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13y^2+4y-17=0
a = 13; b = 4; c = -17;
Δ = b2-4ac
Δ = 42-4·13·(-17)
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-30}{2*13}=\frac{-34}{26} =-1+4/13 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+30}{2*13}=\frac{26}{26} =1 $
| 16=p/2+7 | | X^2-+8x+14=0 | | 360-14h=444 | | 3x+2+3x-3+4x-1=72 | | 2x+1=+6 | | 2z-18-14z=-8 | | 360h+14=444 | | 4^8x=90 | | 8-3+n=25 | | 4–28x=–98 | | 360+14h=444 | | 4x–28x=–98 | | 13g6(2g−1)=13g | | 1=8n=13=6n | | x+5/5=15/5 | | 3-(2x+4)=8 | | 4/5x-9=67 | | -1/6x^2-3=7 | | 3x+2x+x=180/ | | -18-2x=-10 | | 7w=5/6 | | 16x+(-4)=8 | | 3c-155=17-c | | x/9+2/3=5 | | 1/4(6x+6)=2 | | -17=x/13 | | 36x-12=60 | | (2x+1)(3x-6)=0 | | 2.5x=4.7(x+7.7) | | r3+-3r2+-4r+12=0 | | -5-2=3x+6 | | x^2=2x+25 |